Papel del IFN-λ en la patogénesis del Lupus eritematoso sistémico: Mecanismos Biomoleculares
Resumen
El lupus eritematoso sistémico (LES) es una enfermedad autoinmune que causa inflamación sistémica y alteraciones en la tolerancia inmunológica. La activación de los genes inducibles por IFN, contribuye más del 50 % de su patogenia.
Objetivo: relacionar el papel del IFN-λ en la patogenia del LES.
Materiales y Métodos: Búsqueda sistémica en base de datos; a través de las palabras claves del MeSH and DeCS. Fue incluido adicionalmente la palabra “Interferón Lambda”.
Resultados: Se encontró que la producción aberrante de interferón tipo I contribuye a la desregulación de IFN-λ, producido principalmente por células dendríticas plasmocitoides. Este proceso conduce a la estimulación inmunológica por autoanticuerpos y a un aumento de IFNλR-1 en células B, potenciando la generación de anticuerpos. IFN-λ3 se asocia particularmente con nefritis lúpica, y el IFN-λ en general aumenta la expresión de MHC-I, intensificando la respuesta de células T CD8+ y posiblemente afectando la tolerancia central y la regulación en el timo.
Conclusión: Se destaca que el IFN-λ favorece la activación inmune, formación de inmunocomplejos, inflamación crónica y producción de autoanticuerpos, vinculándose niveles altos de IFN-λ3 con mayor actividad de la enfermedad.
Descargas
Citas
(1) Chyuan IT, Tzeng HT, Chen JY. Signaling Pathways of Type I and Type III Interferons and Targeted Therapies in Systemic Lupus Erythematosus. Cells. 2019; 8(9):963. DOI: https://doi.org/10.3390/cells8090963.
(2) Smith CD, Cyr M. The history of lupus erythematosus. From Hippocrates to Osler. Rheum Dis Clin North Am. 1988; 14(1):1-14. DOI: https://doi.org/10.1016/S0889-857X (21)00014-2.
(3) Duarte-García A, Hocaoglu M, Osei-Onomah SA, Dabit JY, Giblon RE, Helmick CG, et al. Population-based incidence and time to classification of systemic lupus erythematosus by three different classification criteria: a Lupus Midwest Network (LUMEN) study. Rheumatology. 2022; 61(6):2424-31. DOI: https://doi.org/10.1093/rheumatology/keab879.
(4) Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021; 17(9):515-32. DOI: https://doi.org/10.1038/s41584-021-00608-9.
(5) Dall’Era M, Cisternas MG, Snipes K, Herrinton LJ, Gordon C, Helmick CG. The Incidence and Prevalence of Systemic Lupus Erythematosus in San Francisco County, California: The California Lupus Surveillance Project. Arthritis Rheumatol. 2017; 69(10):1996-2005. DOI: https://doi.org/10.1002/art.40205.
(6) Lee YH, Choi SJ, Ji JD, Song GG. Overall and cause-specific mortality in systemic lupus erythematosus: an updated meta-analysis. Lupus. 2016; 25(7):727-34. DOI: https://doi.org/10.1177/0961203316643189.
(7) Fernández-Ávila DG, Bernal-Macías S, Rincón-Riaño DN, Gutiérrez Dávila JM, Rosselli D. Prevalencia de lupus eritematoso sistémico en Colombia: datos del registro nacional de salud 2012-2016. Lupus. 2019; 28(10):1273-8. DOI: https://doi.org/10.1177/0961203319865791.
(8) Steiger S, Anders HJ. Interferon blockade in lupus: effects on antiviral immunity. Nat Rev Nephrol. 2022; 18(7):415-6. DOI: 10.1038/s41581-022-00550-1.
(9) Sim TM, Ong SJ, Mak A, Tay SH. Type I Interferons in Systemic Lupus Erythematosus: A Journey from Bench to Bedside. Int J Mol Sci. 2022; 23(5):2505. DOI: https://doi.org/10.3390/ijms23052505.
(10) Li QZ, Zhou J, Lian Y, Zhang B, Branch VK, Carr-Johnson F, et al. Interferon signature gene expression is correlated with autoantibody profiles in patients with incomplete lupus syndromes. Clin Exp Immunol. 2010; 159(3):281-91. DOI: https://doi.org/10.1111/j.1365-2249.2009.04047.x.
(11) Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci. 2003;100(5):2610-5. DOI: https://doi.org/10.1073/pnas.0337679100.
(12) Goel RR, Wang X, O’Neil LJ, Nakabo S, Hasneen K, Gupta S, et al. Interferon lambda promotes immune dysregulation and tissue inflammation in TLR7-induced lupus. Proc Natl Acad Sci. 2020; 117(10):5409-19. DOI: https://doi.org/10.1073/pnas.1917341117.
(13) Ank N, West H, Paludan SR. IFN-λ: Novel Antiviral Cytokines. J Interferon Cytokine Res. 2006;26(6):373-9. DOI: https://doi.org/10.1089/jir.2006.26.373.
(14) Vilcek J. Novel interferons. Nat Immunol. 2003; 4(1):8-9. DOI: https://doi.org/10.1038/ni0103-8.
(15) Pestka S. The Interferons: 50 Years after Their Discovery, There Is Much More to Learn. J Biol Chem. 2007; 282(28):20047-51. DOI: https://doi.org/10.1074/jbc.R700004200.
(16) Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci Med. 2019; 6(1):e000270. DOI: https://doi.org/10.1136/lupus-2019-000270.
(17) Goel RR, Kotenko SV, Kaplan MJ. Interferon lambda in inflammation and autoimmune rheumatic diseases. Nat Rev Rheumatol. 2021; 17(6):349-62. DOI: https://doi.org/10.1038/s41584-021-00578-x.
(18) Amezcua-Guerra LM, Márquez-Velasco R, Chávez-Rueda AK, Castillo-Martínez D, Massó F, Páez A, et al. Type III Interferons in Systemic Lupus Erythematosus: Association between Interferon λ3, Disease Activity, and Anti-Ro/SSA Antibodies. JCR J Clin Rheumatol. 2017; 23(7):368-75. DOI: https://doi.org/10.1097/RHU.0000000000000565.
(19) Rodríguez-Carrio J, López P, Suárez A. Type I IFNs as biomarkers in rheumatoid arthritis: towards disease profiling and personalized medicine. Clin Sci. 2014; 128(8):449-64. DOI: https://doi.org/10.1042/CS20140553.
(20) Lin JD, Feng N, Sen A, Balan M, Tseng HC, McElrath C, et al. Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections. PLOS Pathog. 2016; 12(4):e1005600. DOI: https://doi.org/10.1371/journal.ppat.1005600.
(21) de Groen RA, Groothuismink ZMA, Liu BS, Boonstra A. IFN-λ is able to augment TLR-mediated activation and subsequent function of primary human B cells. J Leukoc Biol. 2015;98(4):623-30. DOI: https://doi.org/10.1189/jlb.4HI0215-059RR.
(22) Abdelraouf FH, Ramadan MES, Abdulazim DO, AliGenena, Selim HM. Clinical significance of interferon lambda-3 (IFNλ3)/interleukin 28B (IL28B) in systemic lupus erythematosus patients. Egypt Rheumatol. 2022;44(2):121-5. DOI: https://doi.org/10.1016/j.ejr.2021.04.001.
(23) Wang X, Goel RR, O’Neil LJ, Nakabo S, Hasneen K, Gupta S, et al. Interferon lambda promotes immune dysregulation and tissue inflammation in TLR7-induced lupus. J Immunol. 2020;204(1 Supplement):219.13-219.13. DOI: https://doi.org/10.4049/jimmunol.204.1_Supplement.219.13.
(24) Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol. 2019;6(1):567-84. DOI: https://doi.org/10.1146/annurev-virology-092818-015722.
(25) Sirobhushanam S, Lazar S, Kahlenberg JM. Interferons in Systemic Lupus Erythematosus. Rheum Dis Clin. 2021;47(3):297-315. DOI: https://doi.org/10.1016/j.rdc.2021.03.007.
(26) Kotenko SV, Durbin JE. Contribution of type III interferons to antiviral immunity: location, location, location. J Biol Chem. 2017;292(18):7295-303. DOI: https://doi.org/10.1074/jbc.R116.771915.
(27) Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013;45(2):164-71. DOI: https://doi.org/10.1038/ng.2521.
(28) Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4(1):69-77. DOI: https://doi.org/10.1038/ni885.
(29) Juárez-Vicuña Y, Pérez-Ramos J, Adalid-Peralta L, Sánchez F, Martínez-Martínez LA, Ortiz-Segura M del C, et al. Interferon Lambda 3/4 (IFNλ3/4) rs12979860 Polymorphisms Is Not Associated With Susceptibility to Systemic Lupus Erythematosus, Although It Regulates OASL Expression in Patients With SLE. Front Genet. 2021. Available from: https://www.frontiersin.org/articles/10.3389/fgene.2021.647487.
(30) Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, Lidie KB, et al. Cutting Edge: Ku70 Is a Novel Cytosolic DNA Sensor That Induces Type III Rather Than Type I IFN. J Immunol. 2011;186(8):4541-5. DOI: https://doi.org/10.4049/jimmunol.1004274.
(31) Ye L, Schnepf D, Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol. 2019;19(10):614-25. DOI: https://doi.org/10.1038/s41577-019-0201-4.
(32) Santer DM, Minty GES, Golec DP, Lu J, May J, Namdar A, et al. Differential expression of interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral response induced by interferon-lambda 3 in human immune cells. PLoS Pathog. 2020;16(4):e1008515. DOI: https://doi.org/10.1371/journal.ppat.1008515.
(33) Yin Z, Dai J, Deng J, Sheikh F, Natalia M, Shih T, et al. Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells. J Immunol. 2012;189(6):2735-45. DOI: https://doi.org/10.4049/jimmunol.1200699.
(34) Li W, Deng C, Yang H, Wang G. The Regulatory T Cell in Active Systemic Lupus Erythematosus Patients: A Systemic Review and Meta-Analysis. Front Immunol. 2019. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2019.00159. DOI: https://doi.org/10.3389/fimmu.2019.00159.
(35) Morrow MP, Pankhong P, Laddy DJ, Schoenly KA, Yan J, Cisper N, et al. Comparative ability of IL-12 and IL-28B to regulate Treg populations and enhance adaptive cellular immunity. Blood. 2009;113(23):5868-77. DOI: https://doi.org/10.1182/blood-2008-12-193672.
(36) Dai J, Megjugorac NJ, Gallagher GE, Yu RYL, Gallagher G. IFN-λ1 (IL-29) inhibits GATA3 expression and suppresses Th2 responses in human naive and memory T cells. Blood. 2009;113(23):5829-38. DOI: https://doi.org/10.1182/blood-2008-12-195677.
(37) Domeier PP, Rahman ZSM. Regulation of B Cell Responses in SLE by Three Classes of Interferons. Int J Mol Sci. 2021;22(19):10464. DOI: 10.3390/ijms221910464.
(38) Rivera A. Interferon Lambda’s New Role as Regulator of Neutrophil Function. J Interferon Cytokine Res. October 1, 2019;39(10):609-17. DOI: https://doi.org/10.1089/jir.2019.0077.
(39) Broggi A, Tan Y, Granucci F, Zanoni I. IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nat Immunol. October 2017;18(10):1084-93. DOI: https://doi.org/10.1038/ni.3831.
(40) Rosenberg BR, Freije CA, Imanaka N, Chen ST, Eitson JL, Caron R, et al. Genetic Variation at IFNL4 Influences Extrahepatic Interferon-Stimulated Gene Expression in Chronic HCV Patients. J Infect Dis. 2018;217(4):650-5. DOI: https://doi.org/10.1093/infdis/jix612.
(41) Rouzaut A, Garasa S, Teijeira Á, González I, Martinez-Forero I, Suarez N, et al. Dendritic cells adhere to and transmigrate across lymphatic endothelium in response to IFN-α. Eur J Immunol. 2010;40(11):3054-63. DOI: https://doi.org/10.1002/eji.201040615.
(42) Stegelmeier AA, Darzianiazizi M, Hanada K, Sharif S, Wootton SK, Bridle BW, et al. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int J Mol Sci. 2021;22(9):4726. DOI: https://doi.org/10.3390/ijms22094726.
(43) Manivasagam S, Klein RS. Type III Interferons: Emerging Roles in Autoimmunity. Front Immunol. 2021;12:764062. DOI: https://doi.org/10.3389/fimmu.2021.764062.
(44) Duong FHT, Trincucci G, Boldanova T, Calabrese D, Campana B, Krol I, et al. IFN-λ receptor 1 expression is induced in chronic hepatitis C and correlates with the IFN-λ3 genotype and with nonresponsiveness to IFN-α therapies. J Exp Med. 2014;211(5):857-68. DOI: https://doi.org/10.1084/jem.20131557.
(45) Benhammadi M, Mathé J, Dumont-Lagacé M, Kobayashi KS, Gaboury L, Brochu S, et al. IFN-λ Enhances Constitutive Expression of MHC Class I Molecules on Thymic Epithelial Cells. J Immunol. 2020;205(5):1268-80. DOI: https://doi.org/10.4049/jimmunol.2000123.
(46) Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238(1):91-8. DOI: https://doi.org/10.1111/j.1749-6632.2011.06220.x.
(47) Wang YF, Wei W, Tangtanatakul P, Zheng L, Lei Y, Lin Z, et al. Identification of Shared and Asian-Specific Loci for Systemic Lupus Erythematosus and Evidence for Roles of Type III Interferon Signaling and Lysosomal Function in the Disease: A Multi-Ancestral Genome-Wide Association Study. Arthritis Rheumatol. 2022;74(5):840-8. DOI: https://doi.org/10.1002/art.42022.
(48) Drehmer MN, Castro GV, Pereira IA, de Souza IR, Löfgren SE. Interferon III-related IL28RA variant is associated with rheumatoid arthritis and systemic lupus erythematosus and specific disease sub-phenotypes. Int J Rheum Dis. 2021;24(1):49-55. DOI: https://doi.org/10.1111/1756-185X.13995.
(49) Chen JY, Wang CM, Chen TD, Jan Wu YJ, Lin JC, Lu LY, et al. Interferon-λ3/4 genetic variants and interferon-λ3 serum levels are biomarkers of lupus nephritis and disease activity in Taiwanese. Arthritis Res Ther. 2018;20(1):193. DOI: https://doi.org/10.1186/s13075-018-1691-6.
(50) Oke V, Gunnarsson I, Dorschner J, Eketjäll S, Zickert A, Niewold TB, et al. High levels of circulating interferons type I, type II and type III associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res Ther. 2019;21(1):107. DOI: https://doi.org/10.1186/s13075-019-1884-2.
(51) Aschman T, Schaffer S, Biniaris Georgallis SI, Triantafyllopoulou A, Staeheli P, Voll RE. Interferon Lambda Regulates Cellular and Humoral Immunity in Pristane-Induced Lupus. Int J Mol Sci. 2021;22(21):11747. DOI: https://doi.org/10.3390/ijms222111747.
(52) Ramaswamy M, Tummala R, Streicher K, Nogueira da Costa A, Brohawn PZ. The Pathogenesis, Molecular Mechanisms, and Therapeutic Potential of the Interferon Pathway in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Int J Mol Sci. 2021;22(20):11286. DOI: https://doi.org/10.3390/ijms222011286.
Derechos de autor 2024 Revista Paraguaya de Reumatología
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.